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Abstract 

The study described in this report explores variables that predict success in the 

Australian National Basketball League (NBL) and proposes statistical models 

that relate those variables to success.  The variables considered here are 

technical variables that are specific to basketball, such as blocks, assists and 

turnovers.  For the purposes of this study success is measured through three 

variables - win ratio, points differential and a team’s final ranking in the league. 

Multiple regression models and generalised linear models were developed in 

order to identify the key variables that predict success collectively.  

 



2 
 

The main findings of the study are as follows:  

1. The variables that collectively predict both win ratio and final position in 

the NBL are rebounds for, rebounds against, turnovers for, turnovers 

against, three point shots for, and field goals against.  

2. The variables that collectively predict points differential are those that 

predict win ratio and final position, but including three pointers against 

and fieldgoals for.  

3. Turnovers for and turnovers against are very important predictors of 

success.  

 

1. Introduction 

1.1 The Australian Basketball League  

The Australian National Basketball League (NBL) is an Australian and New 

Zealand basketball league, which has been running since 1978, when games 

were played to a few hundred people in small suburban stadia. Today, basketball 

has one of the highest participation rates of all sports in Australia. The NBL now 

attracts more than 750,000 spectators each season, and prime-time television 

audiences for games that are broadcast across Australia (The National Basketball 

League, 2017).  

 

We have sourced information on ten teams that have played in the NBL between 

2011 and 2017, but, currently, eight teams play in the league. Eight were or are 

based in Australia (Adelaide, Brisbane, Cairns, Gold Coast, Illawarra, Melbourne, 

Perth, Sydney and Townsville), and one is from New Zealand – the Breakers.   

 

For the purposes of this study, technical variables are basketball-specific 

variables that include blocks, assists, turnovers, field goals, three-pointers, 

rebounds, free throws and steals. All of these variables are scored both for a 

team or against a team. A comprehensive list of these technical variables is given 

in Appendix 1 of this report. The variables points for, points against and points 

differential are not considered technical variables, but nevertheless these 

variables are included within the first of the modelling procedures of this 

exploratory study.  



3 
 

1.2 Basketball–specific Variables  

The NBL compiles statistics on the technical variables specific to basketball, 

points for and against, and each team’s final position at the end of the season.  

The variables considered here are technical variables that are specific to 

basketball, such as blocks, assists, turnovers, rebounds, assists, steals, blocks, 

fieldgoals and three point shots. However, little research has been conducted on 

the relationships between the technical variables and success in the NBL, and 

this study provides an initial exploration of those relationships.   

 

 

2.  Research Questions and Methods 

2.1 Research Questions  

The research question of this study is: which variables collectively predict the 

success of teams in the NBL? This question has been delineated into three sub-

questions, as follows: 

1. Which variables collectively predict a team’s win ratio (ratio of wins to 

the number of games played)? 

2. Which variables collectively predict a team’s points differential (mean 

difference between points scored for and points scored against the team 

across all games in a given season)? 

3. Which variables collectively predict a team’s final ranking on the league 

table (position)? 

 

2.2 Data Collection and Analysis  

NBL game statistics were sourced online through the basketball statistics 

website: basketball.realgm.com, and time series data on all ten teams were 

compiled into a single data set. This data set consists of 49 observations across 

25 variables, including team name, year, points for and against, and all 16 

technical variables. The data set was incomplete in that six year time series of 

results were available for some teams, whereas, for other teams time series of 

only one, two or three years were available, and only one observation was 

available for two particular teams. However, the data were judged to be 

sufficient for an exploratory study at the level of an undergraduate research 
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project. Finally, autocorrelation (correlation between data from one period of 

time and data from later periods of time) was ignored for this study.  

 

The open source software application, R Studio, was used to explore the data and 

investigate relationships between the technical variables and success (outcome) 

variables. Multiple regression models were developed in order to identify 

variables that predict success collectively. Multiple regression provides for one 

continuous outcome variable to be modelled by several continuous predictors 

(here the technical basketball-specific variables) and assumes approximately 

linear relationships between the outcome variable and the predictors. After 

creating initial versions of such models, stepwise elimination was used to 

remove any non-significant predictors (those with the highest p-value) and 

produce a Minimum Adequate Model – a model that explains the variation in the 

outcome variable while embodying as few predictors as possible.  In addition, 

several generalised linear models were developed to model final position in the 

league, where position is treated as a count variable.  

 

3.  Analysis and Discussion 

3.1 Our Success (Outcome) Variables  

Clearly, teams with high win ratios and points differentials tend to rank high on 

the league table and may proceed to win the championship - the objective of 

every team in the NBL and indeed many sporting competitions. Clearly, our 

outcome variables are related. The following table gives the calculated 

correlations between the three outcome (success) variables used in this study 

(win ratio, points differential and position): 

 

 WR pd Pos 

WR 1 0.90 -0.91 

pd  1 -0.81 

Pos   1 

 

We see that win ratio and points differential are correlated extremely strongly (r 

= 0.9) and we have very strong negative correlations between those two 

variables and position in the league. The observed negative correlations arise 
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because high values of win ratio and points differential lead to low numeric 

values of Pos (i.e. low values reflect better placings). These three variables are 

very similar and possibly a single model is sufficient to explore the technical 

variables that predict success. However, for the purposes of this study, each of 

them was modelled separately.  

 

3.2 Multiple Regression Models  

In multiple regression we aim to create a linear model which includes two or more 

continuous predictors (independent variables) that together predict a single 

dependent continuous variable. Often we are interested in the predictive power of a 

particular variable above and beyond the impacts of other variables (which we call 

control variables).  

 
In an Ordinary Least Squares regression with multiple predictors, we fit a model of 
the form: 

 

Yi  =  β0  +  β1 X1i  +  β2 X2i  .  .  .  +  βk Xki  .  .  .  +  ei 
 

 

. . . where  β0  is the intercept,  βk  are the coefficients, and ei  are the error terms.  

 
In creating multiple regression models it is highly important to check for normality of 

errors and homoscedasticity (approximate constancy of variance about the 

regression line across the range of values of the predictor), and that the predictors 

are not too highly correlated (we have the problem of multi-collinearity when 

correlations between predictors exceeds approximately 0.8). In addition, we want to 

know about any interactions between the predictors and the extent of any non-

linearity (curvature) in the relationships between predictors and the outcome 

(dependent) variable. Interactions may arise when the influence of two variables on 

a third variable is not additive. When two independent variables interact, the 

relationship between either one of them and the third (dependent) variable depends 

on the value of the other independent variable. 

 

Homoscedasticity means that the variance of the outcome (dependent) variable is 

approximately the same across the range of data. Homoscedasticity is very desirable 

http://en.wikipedia.org/wiki/Additive_function
http://www.statistics.com/index.php?page=glossary&term_id=365
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because most linear models are predicated on the assumption of approximately 

constant variance. Heteroscedasticity arises when the variance of the dependent 

variable varies across the data and may invalidate our analysis unless we can find 

ways of controlling it. In creating the four models discussed in this report, we took 

the appropriate steps to ensure that our data meet the requirements of multiple 

regression.  

 

First, it was established that multicollinearity between the 16 technical variables was 

not problematic. The mean correlation across all variables was 0.14 and the 

maximum correlation was just under 0.8 - that between turnovers against (ta) and 

steals for (sf). Appendix 2 gives the complete correlation table for all technical 

variables of this study. Strong correlations (> 0.5) are evident between af and sf 

(0.59), ta and sf (just below 0.8), ftf and rf (-0.56), a3 and aa (0.53), fga and a3 (0.67).  

 

Second, we investigated interactions between selected pairs of variables, but found 

few significant interactions. In any case, fitting multiple regression models for all 

technical variables and their interactions was not possible because of the limited 

data set. Thus, interaction effects were ignored in all of the modelling procedures of 

this study.    

 

Third, we investigated constancy of variance (homoscedasticity) for each model and 

we discuss this issue in section 3.10.  

 

3.3 Win Ratio as the Outcome Variable 

We define the win ratio (WR) as the ratio of wins to the total number of games 

played in a given season. This variable provides a convenient continuous 

outcome variable for our multiple regression models. Figure 1 gives a boxplot of 

the win ratio for the participating teams across all years within our data set.   
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Figure 1: Box plot of win ratio for each team 

 

Figure 1 shows that the New Zealand team (the Breakers) has performed 

strongly by comparison with the Australian teams. We have data for this team 

for the period from 2011 to 2017. Across those years, New Zealand had the 

second highest median win ratio and second highest mean win ratio (0.63) of all 

teams for which we sourced data. Perth had the highest median and mean win 

ratio (0.66), while Townsville had the lowest mean (0.41). Note that we have 

only one observation for each of Brisbane and the Gold Coast. 

 

It is self-evident that any team that scores many points (pf) and concedes few 

points (pa) will tend to have a high win ratio, except for specific situations in 

which, for example, a team loses most of its games but plays a small number of 

games with high winning scores. Figure 2 gives a graph of win ratio against 

points differential, along with a fitted quadratic curve, created in R through an 

Ordinary Least Squares linear model in which both points differential and its 

square were included as predictors (independent variables).  
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Figure 2: Win ratio plotted against points differential, with a fitted quadratic curve   

 

Figure 2 confirms that a high win ratio is associated very strongly with high 

points differential. The correlation between these two variables is very high 

(0.90), so that the two variable share 82% of variance. A small degree of 

curvature is apparent in this plot and the curvature (the quadratic term) is 

highly significant (p-value = 5.0 e-4).  

 

3.4 A Simple Model for Win Ratio 

The process of identifying the variables that predict win ratio involved creating a 

multiple regression model that includes win ratio as the outcome variable 

(Model A). Every available technical variable, along with points for and points 

against, was placed initially into Model A.  

 

Of course, fitting a model with 49 observations and 18 predictors (our initial 

model) gives a small number of observations for each predictor, and our model 

may be over-fitted. The justification for proceeding was that the present study, 



9 
 

an undergraduate project, essentially constitutes a pilot study on which future 

research may be based.  

 

At each iteration step, non-significant predictors were eliminated until a model 

was created in which all predictors exhibited p-values below 0.05.  The variables 

with the greatest predictive power (points for and points against) remain in 

Model A, while all technical variables have been eliminated. This model yielded 

an Adjusted R-squared of 0.81 and a highly significant p-value (< 2.2e-16).  The 

model explains over 81% of the variance in win ratio and the overall model p-

value is highly significant. Here is the R Studio output for Model A: 

 
Coefficients: 
                       Estimate    Std. Error    t value      Pr(>|t|)     
(Intercept)   0.610391   0.175452     3.479      0.00111 **  
pf                   0.030855   0.002431    12.693     < 2e-16 *** 
pa                 -0.032077    0.002427  -13.215     < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.06502 on 46 degrees of freedom 
Multiple R-squared:  0.8189, Adjusted R-squared:  0.8111  
F-statistic:   104 on 2 and 46 DF,  p-value: < 2.2e-16 

 

Thus, the Model A regression equation is:  WR  =  0.61  +  0.03*pf   -  0.03*pa    

 

We see that only points for (pf) and points against (pa) have remained in the 

model and none of the technical variables have been retained. This is because 

these two variables predict win ratio much more strongly than the technical 

variables, which become non-significant when we control for points for and 

points against. The similarity of the two coefficients is reassuring, because each 

variable is measured on the same scale (points per game).  

 

Of course, in a single game, the difference in points scored for and points scored 

against determine the result, so that points differential (and therefore pf and pa) 

must of necessity be an extremely strong statistical predictor.  
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Mikołajec, Maszczyk & Zając (2013) discuss the importance of factors that 

influence success in basketball, including points scored for and against. They find 

that the main variables that influence results in the NBA (the major US basketball 

competition) relate more to offense than defence.  We tested this finding by 

calculating standardized coefficients for Model A and all subsequent multiple 

models. Standardized coefficients measure the number of standard deviations by 

which the outcome variable changes for every standard deviation increase in the 

predictor(s). Standardized coefficients help to identify the predictors that 

influence the outcome variable most strongly, given that each predictor may be 

measured in completely different units (clearly not the case for pf and pa, which 

are both measured in points per game). The standardised regression coefficients 

for Model A are as follows: 

    pf                pa  

 1.01          -1.05 

 

These standardised coefficients arising from Model A suggest that points for and 

points against are of roughly equal importance in predicting the win ratio. 

Naturally, pf is associated positively with win ratio, while pa is associated 

negatively with win ratio. Of course, in a complete data set of all games within a 

season, the total points for all teams and points against all teams must be equal.  

 

One of the primary uses of any model is as a predictive tool. For example, inserting 

the mean values of pa (82.18) and pf (82.41) into Model A predicts a win ratio of 

0.60. Increasing pf to 85.0, while holding pa at its mean value, predicts a win ratio 

of 0.69. Holding pf at its mean value, while reducing pa to 80.0, predicts a win ratio 

of 0.68. 

 

3.5 A Model for Win Ratio that includes only Technical Variables  

Our next model (Model B) also embodies win ratio as the outcome variable, but 

omits pf and pa, because we wish to identify the purely technical variables that 

predict success. Omitting points for and against obviates the issue of non-

significance of the purely technical variables when controlling for pa and pf.   

 

https://en.wikipedia.org/wiki/Units_of_measurement
https://en.wikipedia.org/wiki/Units_of_measurement
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However, before embarking on our first multiple regression, we investigated 

relationships between variables using regression tree models, available in R 

through the tree package. Regression trees indicate the expected values of the 

dependent variable for particular ranges of values of the predictors and they 

help to identify relationships and interactions between variables before we 

undertake more complex modelling (see Crawley, pages 197 and 204 for a 

helpful explanation of tree models).  

 

Figure 3 gives a tree plot of the technical variables as they predict win ratio.  

 

Figure 3: Tree plot of the technical variables of Model B 

 

A tree plot indicates the relative strength of each predictor.  In a tree plot, the 

longer the branches, the greater the deviance explained (a statistical term 

meaning that the more strongly the independent variable predicts the outcome 

variable). The tree model has identified differences in relationships between 

variables for values of rf less than and above 36.45, and other differences in 

relationships lower down the tree at the indicated values above each pair of 

branches.  

 

The figures at the ends of the branches give the mean win ratio for the relevant 

values of the predictors (technical variables). We see that rebounds for (rf) is the 

strongest predictor. Turnovers against (ta) is important at low values of rf and 

|rf < 36.45

ta < 13.05

ra < 36.8

ta < 11.35

a3 < 0.332

0.5280 0.3991

0.2800

0.5133

0.7189 0.5356
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three-pointers (a3) against are important at higher values of rf. We see that high 

win ratio is associated with lower mean a3 (i.e. the mean win ratio at the end of 

the left a3 branch is 0.7189, greater than the mean value of 0.5356 on the right 

hand branch).   

 

Every technical variable was placed into the initial version of Model B, excluding 

pf, pa and points differential (pd is, of course, an exact linear combination of pf 

and pa). Eleven iteration steps were required to produce a model in which all 

predictors were significant. Model B has an Adjusted R-squared of 0.746 (i.e. it 

predicts nearly 75% of the variability in win ratio) and a p-value of 3.0e-12 (i.e. 

the model is highly significant). Here is the R Studio output for Model B: 

 
Coefficients: 
                       Estimate    Std. Error    t value    Pr(>|t|)     
(Intercept)  0.805487    0.574129    1.403     0.167974     
rf                  0.018064    0.005443    3.319     0.001875 **  
ra                -0.016959    0.004281   -3.962     0.000283 *** 
tf                 -0.043077    0.008183   -5.264    4.50e-06 *** 
ta                 0.047167    0.007367    6.403     1.05e-07 *** 
f3                 2.257193    0.477643    4.726     2.58e-05 *** 
fga              -2.657666    0.727751    -3.652     0.000716 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.07539 on 42 degrees of freedom 
Multiple R-squared:  0.7777, Adjusted R-squared:  0.746  
F-statistic: 24.49 on 6 and 42 DF,  p-value: 3.023e-12  

 

Thus, the Model B regression equation is:  

 

WR  =  0.81 + 0.02*rf  - 0.02*ra  - 0.04*tf  +  0.05*ta  +  2.26*f3  - 2.66*fga      

 

Model B gives the technical basketball-specific variables that combine to predict 

win ratio.  These variables are: rf (rebounds for), ra (rebounds against), tf 

(turnovers for), ta (turnovers against), f3 (three point shots for), and fga (field 

goals against). The variable three-pointers against (a3) was evident in the tree 

model (where it was important only for high values of rf ) but has been 

eliminated from our Model B.  
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The standardised regression coefficients for Model B are as follows: 

 

  rf             ra              tf             ta             f3            fga  
 0.33     -0.31        -0.43        0.51         0.37        -0.35 

 

Turnovers against and turnovers for appear to be the strongest predictors of win 

ratio, but the other variables of the model are also strong predictors.   

 

As with Model A, we can experiment with this model by setting desired values for 

the predictors and evaluating the impact on win ratio. Inserting the mean values 

for each of the technical variables into Model B predicts a win ratio of 0.60. 

Increasing rf from its mean value of 35.0 to 38.0 and reducing ra from its mean 

value of 34.9 to 34.0, while holding all other variables at their mean values, 

predicts a win ratio of 0.62.  Decreasing tf from its mean value of 12.87 to 12.00 

and increasing ta from its mean value of 12.81 to 13.00, while holding all other 

variables at their mean values, predicts a win ratio of 0.59.   

 

3.6 Points Differential as the Success (Outcome) Variable   

Points differential (pd) was the second outcome variable considered in this 

study. Points differential is simply the mean difference between points scored 

for and points scored against a given team across a given season. Figure 4 gives a 

boxplot of the points differential for the participating teams across the years 

within our data set.   
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Figure 4: Box plot of points differential across teams 

 

Figure 4 shows that the New Zealand team has performed strongly in points 

differential by comparison to the Australian teams. Again, we have only one 

observation for Brisbane and the Gold Coast. Of course, Figure 4 looks very 

similar to Figure 1 because the correlation between win ratio and points 

differential is very high (0.90).  

 

3.7 A Model with Points Differential as the Outcome Variable  

A third multiple regression model (Model C) was created in order to identify the 

technical variables with collective predictive power for points differential as the 

outcome variable. Every technical variable was included within the initial 

version of Model C (i.e. excluding pf and pa). Figure 5 gives a tree plot of the 

variables of Model C.  
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Figure 5: Tree plot of the technical variables of Model C 

 

The tree plot of figure 5 is similar to that for win ratio as the outcome variable. 

We see that rebounds for (rf) is the strongest predictor, as it was for win ratio as 

the outcome variable. Assists for (af) is important at low values of rf (whereas in 

Figure 3 turnovers against was the important variable here) and three-pointers 

(a3) against are important at higher values of rf. Again, we see that high points 

differential is associated with lower mean a3 (i.e. the mean win ratio at the end 

of the left a3 branch is 6.5440, greater than the mean value of 0.3333 on the right 

hand branch). Of course, low values of fieldgoals against (fga) is associated with 

higher mean points differential.  

 

Eight elimination steps were required to create Model C, and an Adjusted R-

Squared of over 0.9 and a highly significant model p-value were obtained. Model 

C showed great promise and was considered worthy of further development.  

 

Figure 6 presents diagnostic plots of the residuals of Model C, and indicates the 

strong influence of three outliers, but of one outlier in particular (point 14). 
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Figure 6: Diagnostic Residual plots for Model C 

 

Within Figure 6 the first plot (the plot of residuals versus fitted values) is 

roughly random. Apart from three outliers, we have approximate constancy of 

variance and the residuals display little inherent structure. Any visible structure 

in this plot suggests that other models (possibly non-linear models) may be 

more appropriate than Model C.   

 

The normal QQ plot (the second plot) suggests a roughly normal distribution, 

apart from points 14, 23 and 34. The third plot (the scale-location plot of the 

square root of the standardized residuals) provides more or less the same 

information as in the first plot, but is scaled differently.  
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Finally, the last plot (residuals versus leverage) gives the Cook’s Distance of each 

point in the set of predictors, a measure of the influence that any observation 

exerts on the model; that is, the influence of each observation on the fitted 

outcome variable. A commonly accepted criterion (adopted for our study) is that 

an observation with a Cook’s distance of 1.0 or more can be considered an 

outlier.  According to this criterion, point 14 is highly influential (more 

influential than points 23 and 34, for example). In fact, this point represents the 

only datum we have for one particular team (the Gold Coast). We considered this 

point to be anomalous and we removed it so as to create an improved version of 

Model C. After removal of this point, the plot of residuals versus fitted values is 

approximately random and the normal QQ plot suggests a roughly normal 

distribution.  Elimination of point 14 resulted in a clear improvement of the 

model.  

 

Here is the output from R studio for Model C, where we have omitted point 14 

and implemented stepwise elimination: 

 
Coefficients: 
                 Estimate Std.     Error       t value     Pr(>|t|)     
(Intercept) -12.42277    8.31047   -1.495      0.143006     
rf                    0.61783     0.07953    7.769      1.93e-09 *** 
ra                  -0.54666    0.07617    -7.177       1.23e-08 *** 
tf                   -1.28646     0.11488  -11.198     9.44e-14 *** 
ta                   1.47231     0.10901    13.507     2.74e-16 *** 
f3                 59.36158     8.01799     7.404      6.02e-09 *** 
a3               -67.92495   12.07846    -5.624     1.73e-06 *** 

fgf                53.77610   13.86480     3.879     0.000393 *** 
fga              -30.00672   13.24110    -2.266     0.029067 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.051 on 39 degrees of freedom 
Multiple R-squared:  0.9508, Adjusted R-squared:  0.9407  
F-statistic: 94.13 on 8 and 39 DF,  p-value: < 2.2e-16 

 

Model C has an adjusted R-squared of over 0.94 (i.e. it predicts approximately 

94% of the variability in points differential) and has a p-value of < 2.2e-16. (i.e. 

the model is highly significant).  
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The Model C regression equation is:  

 

PD = -12.42 + 0.62*rf  - 0.55*ra  - 1.29*tf  + 1.47*ta  +  59.36*f3  - 67.92*a3 + 

53.78* fgf - 30.00*fga  

  

Clearly, the following variables have a strong collective predictive power for 

points differential: rf (rebounds for), ra (rebounds against), tf (turnovers for), ta 

(turnovers against), f3 (three point shots for), a3 (three point shots against), fgf 

(field goals for) and fga (field goals against). Two variables that were retained in 

Model C were eliminated in Model B (a3 and fgf).  

 

The following table gives the standardised regression coefficients for Model C.   

   rf           ra         tf         ta         f3         a3        fgf      fga 
 0.40   -0.27  -0.44    0.55     0.34     -0.31     0.19    -0.14 

 

As for Model B, these standardised regression coefficients suggest that the two 

strongest predictors of points differential are ta and tf, so that turnovers have a 

considerable influence on points differential. Another strong predictor is rf, 

which relates closely to turnovers because catching a rebound means either 

retaining or gaining possession of the ball, and turnovers occur when a team 

loses possession of the ball.  

 

Trninic, Disdar & Luksic (2002) attempted to identify factors that differentiated 

between winning and losing teams in the final tournaments of the European club 

championships from 1992 to 2000. They found that the highest discriminative 

power for separating winning and losing teams was demonstrated by defensive 

rebounds (ra), and by field goals (fgf and fga). All three variables appear in 

Model C.  

 

The two variables f3 and a3 are also strong predictors, suggesting that three 

point shooting for and against a team influences points differential considerably.  

The standardised regression coefficients suggest that the technical variables fgf 

and fga of Model C determine points differential somewhat less strongly. 
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Again, we can experiment with particular values of the predictors and evaluate 

their impact on points differential. Inserting the mean values for each of the 

technical variables into Model C predicts a points differential of 0.42. Increasing rf 

from its mean value of 35.0 to 38.0, reducing ra from its mean value of 34.9 to 34.0, 

decreasing tf from its mean value of 12.87 to 12.00 and increasing ta from its mean 

value of 12.81 to 13.00, while holding all other variables at their mean values, 

predicts a points differential of 3.47.   

 

3.8 Turnovers and Rebounds     

Model B and Model C share the following variables: rf (rebounds for), ra 

(rebounds against), tf (turnovers for), ta (turnovers against), f3 (three point 

shots for) and a3 (three point shots against).   

 

Ruano et al (2006) analyzed game-related statistics that discriminate between 

winning and losing teams in female basketball. They identified defensive 

rebounds (ra in our study) and assists as key variables that discriminated 

between winning and losing teams. Gómez, Lorenzo & Sampaio (2008) also 

noted the importance of defensive rebounds. They found that winning balanced 

games (where the two teams score similar numbers of points) is often the result 

of greater success in defensive rebounds and that defensive rebounds are very 

important in balanced games. They also found that success in defensive 

rebounds contributed strongly to winning unbalanced games.  

 

Lorenzo, Gómez, Ortega, Ibáñez & Sampaio (2010) analysed statistics that 

discriminate between winning and losing in male under-16 basketball games. 

They also identified turnovers and assists as the critical variables that 

discriminated between successful and unsuccessful teams.  Lorenzo et al.  

emphasise the importance of reducing the impact of turnovers, especially in 

close games, because in close games winning teams tend to have better turnover 

statistics.  A controlled style of play reduces risk because it reduces the 

frequency of turnovers. Our models include turnovers for and against (tf and ta) 

and, indeed, these variables appear to be the strongest predictors.  
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3.9 Fieldgoals and Three Point Shots 

Model B shows that the technical variable f3 (three point shots for) has strong 

predictive power for win ratio and our Model C shows that both a3 and f3 are 

important for points differential in the NBA. Lorenzo et al.  found that in both 

balanced games (score differences between 10 and 29 points) and unbalanced 

games (score differences above 30 points), two-point fieldgoals discriminated 

strongly between  successful teams.  Ruano et al also found that successful free-

throws and three point field-goals were important predictors in female 

basketball.  

 

Watson (2016) underscores the importance of three point shots in influencing 

the outcome of the game. He notes that the average number of three-point 

attempts per game is increasing and will continue to increase in the future. He 

suggests that focusing on defence is the best way of preventing three pointers. 

Watson discusses the Spurs - the best defensive team in the NBA (the major US 

basketball competition), as follows:  

 

The Spurs are really locking in on the elite shooters of the NBA. The top 10 shooters 

in the league are on average shooting 40% less three-point attempts against the 

Spurs than they usually do. This is a huge advantage.  

 

Watson’s research is specific to the NBA, but the variables a3 and f3 emerge from 

our study as important to success in the NBA. Watson finds that defending the 

three point shot is very advantageous and that three point shots scored against a 

team constitute a major disadvantage.  This finding is confirmed in Model C in 

which a3 has a strong negative association with points differential.  

 

3.10 Checking the Assumptions of Multiple Regression Models  

Multiple regression models are developed on the assumption that the predictors 

and outcome variables are related linearly (or approximately so). Non-linearity 

invalidates multiple regression. Thus, bivariate analysis was undertaken at the 

very beginning of this study to assess the extent of linearity between variables. 

Because the data set involves 16 technical variables and three outcome variables, 
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a complete set of all bivariate plots across all pairs of variables is beyond the 

scope of this report. However, Figure 7 gives bivariate plots with fitted curves 

(using the default Loess procedure within R and R Studio), but including only 

four of the key variables that remained in Model C following stepwise 

elimination and removal of point 14.   

 

Figure 7: Bivariate plots of the key variables of Model C   

 

The bivariate plots show considerable scatter but, for the purposes of an 

undergraduate research study, the variables relate linearly enough to justify the 

development of multiple regression models.     
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4. Final Position in the League as the Outcome Variable   

4.1 Final Position and Points Differential  

 Figure 8 gives a graph of position against points differential, along with a fitted 

curve, developed through a generalised linear model using a Poisson error 

structure (see section 4.3).  

 

Figure 8: Position in the league against points differential with a fitted curve   

 

Figure 8 confirms visually that a strong finishing position in the league is 

associated with high points differential.  A degree of curvature is apparent in the 

fitted curve.  For our data set, at finishing positions at or close to the top position 

(i.e. first place), somewhat greater points differentials are required in order to 

gain an additional placing than at lower finishing positions. It would be 

interesting to explore this finding with more comprehensive data sets than that 

of this study.   
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4.2 Correlations between Final Position and the Technical Variables 

We found moderate to strong correlations (> 0.3) between the teams’ finishing 

positions and the following variables (Spearman’s correlations are given in 

parentheses): 

1. Points difference (-0.81) 

2. Three pointers against (0.50) but not three pointers for (-0.21) 

3. Fieldgoals against (0.50) but not fieldgoals for (-0.16) 

4. Assists for (-0.43) 

5. Rebounds for (-0.42) and rebounds against (0.32) 

6. Rebounds for (-0.42) and rebounds against (0.32) 

7. Steals for (-0.40) but not steals against (0.03) 

8. Points for (-0.38) and against (0.34) 

9. Turnovers against (-0.34) but not turnovers against (0.01) 

 

On the basis of these moderately strong correlations, it was decided to develop 

generalised linear models.  

 

4.3 Generalised Linear Models for modelling Position  

We developed several generalised linear models (GLM) using final position in the 

league table as the outcome variable, using both Poisson error structures and 

Quasi-Poisson error structures. We also developed Negative Binomial models. In 

these models we consider position as a count variable which must always be 

greater than or equal to one. In count data the errors may be distributed non-

normally and the variance may increase with the mean values, so that multiple 

regression models based on Ordinary Least Squares are no longer valid.   

 

Our Poisson model uses the natural logarithm as the link function (the default link 

function for the Poisson error distribution). The Poisson error distribution 

assumes that the variance is approximately equal to the mean, so that specifying a 

Poisson error distribution accounts well for integer data meeting that criterion. 

For the variable position, the mean (5.0) and variance (7.5) are similar enough to 

justify a model with a Poisson error structure. Specifying a logarithm as the link 

function forces all of the predicted values to be positive. Clearly, this must be the 
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case if we are modelling position in the league table, where the smallest possible 

value is unity.  

 

Position was taken as the outcome variable, and all technical variables were 

included in the initial versions of our models. Eleven iteration steps were 

required to create Model D, using Poisson errors. No advantage was found either 

by adopting a Quasi-Poisson error structure or a Negative Binomial model. Here 

is the output from R Studio for Model D, in which we use the Poisson error 

structure: 

  
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -1.42437    3.62080  -0.393  0.69403    
rf          -0.07146    0.03275  -2.182  0.02911 *  
ra           0.07067    0.03273   2.159  0.03083 *  
tf           0.17040    0.05186   3.286  0.00102 ** 
ta          -0.16522    0.05269  -3.136  0.00171 ** 
f3          -8.36050    3.03927  -2.751  0.00594 ** 
fga         12.85640    4.66098   2.758  0.00581 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 64.366  on 47  degrees of freedom 
Residual deviance: 20.695  on 41  degrees of freedom 
AIC: 190.29 
 

Number of Fisher Scoring iterations: 4 

 

 

In generalized linear models, deviance is a measure of goodness of fit. R (and R 

Studio) report two forms of deviance – the null deviance and the residual deviance. 

The null deviance shows how well the outcome variable is predicted by a model 

that includes only the intercept (grand mean). We use the residual deviance to test 

the goodness of fit. The residual deviance is the difference between the deviance of 

the current model and the maximum deviance of the ideal model, where the 

predicted values are identical to the observed. If we have two or more similar 

models (where the predictors of one model are also predictors of the other 

models), the rule of thumb is to select the model with the lowest residual deviance. 
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We note that Model D is under-dispersed (i.e. the residual deviance is less than the 

degrees of freedom), indicating that the predicted variability in the outcome 

variable is greater than the observed variability.  Thus, our model provides a good, 

but not perfect, description of the variability in Position. To obtain the final 

version of Model D we take the exponential of the model provided by the initial 

Model D coefficients because those estimates are scaled in natural logs. The final 

Model D regression equation is as follows:  

 

loge(Pos) = -1.42 – 0.07*rf  + 0.07ra  + 0.17*tf  - 0.17*ta  - 8.36*f3  +  12.86*fga  

 

The final set of technical variables is identical to that of Model B. Again, we can 

experiment with our model. Taking the mean values of each of the technical 

variables in Model D predicts a finishing position of 3.99 (i.e. marginally better 

than fourth place).  

 

Holding all other variables at their mean values, but increasing field goals against 

from its mean value of 0.44 to 0.50, results in a predicted finishing position of 8.8 

(i.e. barely better than ninth place).  Holding all other variables at their mean 

values, but decreasing field goals against from its mean value of 0.44 to 0.35, 

results in a predicted finishing position of 1.27 (i.e. nearly first place).   

 

Holding all other variables at their mean values, but increasing three pointers for 

from its mean value of 0.44 to 0.40, results in a predicted finishing position of 

2.45 (i.e. better than third place). Holding all other variables at their mean 

values, but decreasing three pointers for from its mean value of 0.44 to 0.30, 

results in a predicted finishing position of 5.66 (i.e. worse than fifth place).   

 

Holding all other variables at their mean values, but increasing rebounds for (rf) 

from its mean value of 35.03 to 40.0, increasing tf from its mean of 12.85 to 14.0 

and decreasing ta from its mean of 12.78 to 12.0, results in a predicted finishing 

position of 2.73 (i.e. better than third place).   
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4.4 Extending the Analysis for Future Work 

A principal components analysis (PCA) was performed on the technical variables 

in order to reduce the number of predictors to s smaller subset of linear 

combinations of the original set of predictors. Figure 9 gives a scree plot of the 

technical variables.  

 

 

Figure 9: PCA Analysis of the Technical Variables  

 

Five principal components with eigenvalues above 1.0 are present but few of the 

variables load strongly on any one component. However, the variables rf (0.389), 

ftf (-0.310), a3 (-0.368) and fga (-0.413) have the strongest loadings on the first 

component. PCA analysis of larger datasets similar to our may provide further 

insight into relationships between the technical variables.  

 

5. Summary and Recommendations 

The findings of this study, obtained mainly through multiple regression and 

generalised linear models, are of potential importance for coaching and 

management of basketball. We found that particular technical, game-related 
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variables predict strongly the outcome variables win ratio, points differential 

and position in the league table, while other technical, game-related variables are 

not strong predictors. Our main findings are as follows:  

 

1. Apart from points for and points against, it is clear that the strongest 

predictors of a team’s win ratio and final position in the league table are: 

rf (rebounds for), ra (rebounds against), tf (turnovers for), ta (turnovers 

against), f3 (three point shots for) and fga (field goals against) 

 

2. The variables that predict a team’s points differential are those that 

predict win ratio and position, but also including a3 and fgf.  

 

3. Turnovers for and against appear to be very strong predictors of success. 

 

Further research will be undertaken on the basis of more comprehensive 

statistics from the NBL and other competitions in other countries, such as the US 

competition - the NBA. If a much bigger sample of data can be compiled, then 

more sophisticated models can be developed that include interaction effects and 

that take account of possible non-linear relationships between technical 

variables and selected outcome variables.  
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APPENDIX 1 

Definitions of the Technical Variables 

 

Points for (pf): the points scored for a team  

Minimum: 72.30;   Maximum:  93.00;  Mean:  82.15; Median: 82.15   

 

Points against (pa): the points scored against a team 

Minimum: 68.10;   Maximum:  91.80;  Mean:  82.45; Median: 83.40   

 

Blocks for (bf): when a player stops the opposition’s shot at the basketball 

hoop mid-air with their hand   

Minimum: 1.90;   Maximum:  5.40;  Mean:  3.22; Median:  3.05  

 

Blocks against (ba): when an opposition player stops the shot mid-air with 

their hand while defending their basketball hoop  

Minimum: 2.20;   Maximum:  4.40;  Mean:  3.21;  Median: 3.20    

 

Steals for (sf): taking the ball off the opponent while they are dribbling the 

ball 

Minimum: 3.30;   Maximum:  8.40;  Mean:  5.50; Median: 5.20   

 

Steals against (sa): when the ball is taken by an opposition player while 

dribbling the ball  

Minimum: 4.30;   Maximum:  7.50;  Mean:  5.58; Median: 5.50 

 

Assists for (af): passing the ball to a team member 1-3 seconds before they 

score 

Minimum: 12.60;   Maximum:  19.30;  Mean:  15.38; Median: 15.10 

 

Assists against (aa): when the opposition passes the ball to a team member 1-

3 seconds before they score 

Minimum: 12.40;   Maximum:  18.80;  Mean:  15.26; Median: 15.20 
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Rebounds for (rf): catching the ball before it hits the ground after a missed 

shot attempt from either team 

Minimum: 30.30;   Maximum:  42.10;  Mean:  35.03; Median: 35.00 

 

Rebounds against (ra): when the opposition catches the ball before it hits the 

ground after a missed shot attempt from either team 

Minimum: 30.60;   Maximum:  40.00;  Mean: 35.13; Median: 35.15 

 

Turnovers for (tf): giving away possession of the ball 

Minimum: 9.50;   Maximum:  16.30;  Mean: 12.85; Median: 12.95 

 

Turnovers against (ta): when the opposition gives away possession of the ball 

Minimum: 10.00;   Maximum:  18.00;  Mean: 12.79; Median: 12.50 

 

Free throws for (ftf): successfully converting a free shot at the basket from 

the free-throw line after a player has been fouled 

Minimum: 0.62;   Maximum:  0.83;  Mean: 0.73; Median: 0.74 

 

Free throws against (fta): when an opposition player successfully converts a 

free shot at the basket from the free-throw line after they have been fouled 

Minimum: 0.67;   Maximum:  0.78;  Mean: 0.73; Median: 0.74 

 

Three point shots for (f3): successfully shooting the basketball from beyond 

the three point line 

Minimum: 0.29;   Maximum:  0.39;  Mean: 0.34; Median: 0.34 

 

Three point shots against (a3): when the opposition shoots the basketball 

successfully from beyond the three point line 

Minimum: 0.30;   Maximum:  0.38;  Mean: 0.34; Median: 0.34 

 

Field goals for (fgf): successfully shooting the basketball within the three 

point line 
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Minimum: 0.40;   Maximum:  0.47;  Mean: 0.44; Median: 0.44 

 

Field goals against (fga): when the opposition shoots the basketball  

successfully within the three point line 

Minimum: 0.40;   Maximum:  0.48;  Mean: 0.44; Median: 0.44 
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APPENDIX 2 

Correlation Table for all Technical Variables 

 

 
 

  

bf ba sf sa af aa rf ra tf ta ftf fta f3 a3 fgf fga

bf 1 0.38 0.29 -0.01 0.25 0.07 0.4 0.17 0.08 0.11 -0.37 0.14 -0.17 -0.08 0.12 -0.23

ba 0.38 1 -0.08 0 0.09 0.29 0.29 0.13 0.11 -0.1 -0.25 0 -0.22 0.21 0.15 0.04

sf 0.29 -0.08 1 0.16 0.59 0.12 0.16 -0.13 0.19 0.8 -0.01 0.12 0.05 -0.34 0.02 -0.2

sa -0.01 0 0.16 1 0.38 0.2 0.19 -0.01 0.71 0.18 -0.11 0.03 0.03 0 0.09 -0.09

af 0.25 0.09 0.59 0.38 1 0.26 0.39 -0.21 0.3 0.49 -0.06 0.16 0.18 -0.06 0.37 -0.1

aa 0.07 0.29 0.12 0.2 0.26 1 -0.11 0.3 0.04 0.11 0.2 0.2 0.01 0.53 0.39 0.41

rf 0.4 0.29 0.16 0.19 0.39 -0.11 1 -0.19 0.3 0.06 -0.56 -0.32 -0.23 -0.33 -0.04 -0.62

ra 0.17 0.13 -0.13 -0.01 -0.21 0.3 -0.19 1 -0.17 -0.15 -0.03 -0.15 -0.15 0.1 -0.15 0.01

tf 0.08 0.11 0.19 0.71 0.3 0.04 0.3 -0.17 1 0.32 -0.2 -0.17 -0.05 -0.16 0.08 -0.17

ta 0.11 -0.1 0.8 0.18 0.49 0.11 0.06 -0.15 0.32 1 0.12 -0.08 -0.14 -0.37 -0.12 -0.16

ftf -0.37 -0.25 -0.01 -0.11 -0.06 0.2 -0.56 -0.03 -0.2 0.12 1 0.24 0.21 0.31 0.07 0.54

fta 0.14 0 0.12 0.03 0.16 0.2 -0.32 -0.15 -0.17 -0.08 0.24 1 0.48 0.21 0.36 0.29

f3 -0.17 -0.22 0.05 0.03 0.18 0.01 -0.23 -0.15 -0.05 -0.14 0.21 0.48 1 0.16 0.54 0.23

a3 -0.08 0.21 -0.34 0 -0.06 0.53 -0.33 0.1 -0.16 -0.37 0.31 0.21 0.16 1 0.44 0.67

fgf 0.12 0.15 0.02 0.09 0.37 0.39 -0.04 -0.15 0.08 -0.12 0.07 0.36 0.54 0.44 1 0.35

fga -0.23 0.04 -0.2 -0.09 -0.1 0.41 -0.62 0.01 -0.17 -0.16 0.54 0.29 0.23 0.67 0.35 1
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