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A Subtlety of Earth’s Gravity and its Rotation 
 

David Alexander Lillis, 9 March 2019 
 
This article provides an elementary introduction to the effect of Earth’s non-spherical shape 
(oblateness) and the centrifugal force on Earth’s gravity for non-Earth scientists, students 
and other interested readers. In this article I describe a simple model of the gravitational 
acceleration on Earth’s surface, taking into account both the gravitation of the Earth itself 
and the effect of centrifugal forces acting on bodies located on Earth’s surface. This model 
was developed purely for instructional purposes and is not intended to supplant more 
accurate and much more complex models already available in the relevant literature. 
Software written in the R language can be provided for those who wish to reproduce the 
calculations and graphs presented here.   
 

Part 1: Weight involves a combination of Gravity and Centrifugal Effect 
As is well known, Earth is not a perfect sphere. Because of its rotation the centrifugal effect 
makes it bulge slightly at the equator and slightly squashed at the poles, to produce what 
we refer to as an ‘oblate spheroid’. In fact, its observed diameter is approximately 43 km 
greater at the equator than at the poles, leading to slightly stronger gravitation at the poles 
than at the equator. However, the centrifugal effect also applies to a body on the Earth’s 
surface as it rotates about Earth’s rotation axis. This force appears to modify the effect of 
pure gravity and tends to reduce the quantity we call ‘weight’.  
 
Figure 1 shows both the gravitational force and the centrifugal force acting on a body at 
Earth’s surface at different latitudes, and their resultants (the vector sums of the 
gravitational forces and the centrifugal forces). 

 
 

Figure 1: Gravitational force, centrifugal force and their resultants at different latitudes 
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In Figure 1 (Shimadazu, 2019) the Earth’s gravitational force is represented by red 
arrows that point from Earth's surface directly toward Earth's centre. The red arrow lengths 
represent the strength of the gravitational force at various latitudes. In fact, pure gravity 
(not considering the centrifugal force) is slightly stronger at the poles than elsewhere 
(especially at the equator), mainly because the surface there is slightly closer to the Earth’s 
centre of mass than other regions of the Earth’s surface. In addition, the centrifugal force is 
weakest at the poles and strongest at the equator, so that a body appears to weigh even 
more at the poles than at the equator. Thus, the centrifugal effect appears twice in our 
present context, both giving rise to Earth’s oblateness and acting on bodies on the rotating 
Earth’s surface.  
 
In the context of a body on the Earth’s surface, the centrifugal effect is identical to the 
effect we get when we rotate a small mass attached to one end of a piece of string. In Figure 
1 the black arrows indicate schematically the direction and magnitude of the centrifugal 
effect at various latitudes. The effect is vertical and greatest at the equator because any 
point on the equator moves around the Earth’s axis of rotation at greater speed than at 
other latitudes. Thus, gravity appears to be slightly reduced near the equator. In the regions 
of the poles the centrifugal effect is very small and is nearly horizontal. Here, gravity 
dominates the centrifugal force.  
 
The dark blue arrows indicate the resultants of vector addition of the gravitational forces 
and centrifugal forces (i.e. the resultant of local gravity and the centrifugal forces).  The 
combination of slightly reduced gravitation at the equator and the significant vertical 
centrifugal force means that the apparent force of gravity at the equator and the apparent 
weight of a body are approximately 0.5% less than at the poles.   
 
Part 2: Variation of Speed on the Rotating Earth 
The angular velocity of the Earth as it spins is 360o or 2π radians per day which gives 
7.292 × 10−5 rad/s or approximately 0.00417o per second. The Earth’s angular velocity is 
fixed for the entire Earth. However, the linear velocity of the Earth’s surface is much greater 
at the equator than at the poles. At the equator the surface moves eastward at almost 
1,674 km/hr (465 m/s), but at approximately 0.00008 km/hr (2.22 X 10-5 m/s) at the poles. 
In general, the linear speed V(ϕ) at Earth’s surface at a given latitude ϕ is approximately:   
  

V(ϕ) = 1670 cosϕ km/hr   =   463.89 cosϕ m/s 
 
. . . where the latitude ϕ is the angle subtended from the plane of the equator to the 
chosen point on Earth’s surface.   
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Part 3: A Schematic Diagram of the Earth and its Radius at a given Latitude 
Figure 2 shows the rotating Earth, latitude (ϕ) - the angle subtended from Earth’s centre to 

a point on Earth’s surface at point P, Earth’s radius r for latitude ϕ (varying because of its 
centrifugally-induced oblateness) and the equatorial and polar radii. Here, Earth’s radius r is 
the radial distance from Earth’s centre to the chosen point on the Earth’s surface at the 
given latitude. 
 

 
 

Figure 2: The Earth, a point P on Earth’s surface at a given latitude ϕ, Earth’s radius r for latitude ϕ 
and the equatorial and polar radii. 

 
In Figure 2 the Earth rotates at angular velocity ω (for the purposes of the calculations 
described in this article we assume the value for ω in radians given above - approximately 
7.292 × 10−5 rad/s). For a point P on the Earth’s surface, situated at latitude ϕ and Earth’s 
radius r from Earth’s centre, the radial distance from the axis of rotation to the chosen point 
P is: 
 

rsin(90o – ϕ)  =  rcos ϕ. 
 
This quantity gives the local circumference of the Earth at the given latitude. Of course, the 
apparent gravitational acceleration varies slightly by latitude, both because of Earth’s 
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oblateness and the centrifugal force. The R code of Appendix 1 enables calculation of Earth’s 
radius due to oblateness at any latitude, the local radial distance and ground speed doe to 
rotation.  
 

Part 4: Earth’s Gravitational and Centrifugal Accelerations at a given Latitude 
Figure 3 shows the Earth’s gravitational acceleration g(ϕ), pointing towards the Earth’s 
centre, the centrifugal acceleration resolved into radial and tangential components and the 
vector sum (resultant) of the two (geff).     
 

 
 

Figure 3: Gravitational force acting towards the Earth’s centre, the centrifugal force at a given 
latitude and the vector sum (resultant) of the two forces. 

 
We refer to the resultant as effective gravity (geff). The resultant involves a slight reduction 
in the apparent weight of a body as we move from the poles to the equator and the 
resultant no longer points towards the Earth’s centre. As before, r is Earth’s radius at the 
given latitude – the distance from the Earth’s centre to the point on the Earth’s surface at 
the given latitude ϕ. The angle ϴ is the angle between g(ϕ) and the resultant geff.  
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Part 5: Setting up our Model  
In the calculations of this article (and associated R software) we calculate g(ϕ) for the given 
latitude and its corresponding Earth radius on the basis of Newton’s Law of Gravitation: 
 

g(ϕ) = G M / R(ϕ)2         . . .   equation 1 
 
. . . where G is the Gravitational Constant (6.674 × 10−11 m3 kg−1s−2 ) and M is the Mass of the 
Earth (5.972 × 1024 kg). 
 
Though it is not exact, we use this Newton-based approach for g(ϕ) rather than the 
conventional standard value of 9.80665 m/s2 (CPGM, 2019). This single value is 
approximately true for the entire Earth, ignoring the small effect of oblateness, but 
Newton’s approach reflects an actual variation in gravitational acceleration across latitudes.  
 
In fact, the increase in g(ϕ) due to oblateness is approximately 0.1 as large as expected 
from an inverse square law, and is approximately 0.33 of the observed value (Iona, 1978). 
The observed value is also larger because the Earth’s density increases toward the center. 
Thus, our calculated model values for local gravitational acceleration slightly overestimate 
the true values. For example, our calculated value of g(ϕ) at the poles is 9.86 m/s2, whereas 
the measured value is 9.83 m/s2. In our simple Newton-based model, g(ϕ) is overestimated 
by approximately 0.2% at the poles and by approximately 0.3% at the equator.  
 
We see the resultant of g(ϕ) and the centrifugal force in reducing apparent gravity and 
offsetting the apparent gravitational force away from Earth’s centre (shown here by the 
angle ϴ). In fact, ϴ is very small and the schematic diagram of Figure 3 magnifies the angle 
considerably, simply for clarity of the diagram. On Earth, the tangential component is small 
and ϴ is largely cancelled out by friction, but can be useful to consider the tangential 
component in applications such as analysis of the dynamics of oceans and the atmosphere. 
 
Part 6: Calculating the Magnitude of Effective g 
We now attempt to quantify the apparent reduction in g(ϕ) and determine by how much 
geff deviates from pointing towards Earth’s centre. Now, the centrifugal acceleration A at the 
chosen point on Earth’s surface is:  
 

A  =  V2 / local radial distance at latitude ϕ  =  V2 / r sin(90 - ϕ) =  V2 / r cos ϕ 
 
. . .  where V is the speed of rotation of the chosen point on Earth’s surface and r is Earth’s 
radius at latitude ϕ. The local radius is measured directly from the Earth’s rotation axis, 
rather than from Earth’s center, and is not to be confused with the actual Earth’s radius at 
that latitude. Since V is the product of radial distance from Earth’s rotation axis and the 
angular velocity ω, the centrifugal acceleration can be written: 
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(r cos ϕ)2 ω / r cos ϕ   =   ω2  r cos ϕ    . . .   equation 2 
 

Of course, the centrifugal force on a body of mass M is simply M ω2  r cos ϕ. 
Note that these formulae apply to both the northern hemisphere and southern hemisphere 
because the cosine function is symmetric about the angle zero (in our present context zero 
represents the equator). Even if we assume latitudes in the southern hemisphere to have 

negative values of ϕ, these expressions will give the same result as for the equivalent 
latitudes in the northern hemisphere.  
 
In Figure 3 we see that the purely gravitational acceleration g(ϕ) is directed towards the 
Earth’s centre. So, to combine the gravitational acceleration with the centrifugal 
acceleration in order to calculate the resultant, we resolve the centrifugal acceleration into 
two components: one tangential to the Earth’s surface and another component normal to 
the Earth’s surface (and therefore anti-parallel with the local purely gravitational 
acceleration). These components are as follows: 
 

1. The normal component of centrifugal acceleration  =  ω2  r cos2 ϕ  (i.e. an extra factor 
of cos ϕ appears when we resolve the centrifugal acceleration normal to Earth’s 
surface). 

 
2. The tangential component of centrifugal acceleration  =  ω2  r cos ϕ sin ϕ 

 
Thus, the vector sum of the local gravitational acceleration and the centrifugal acceleration 
appears to reduce g(ϕ) and make it point slightly away from the Earth’s centre. The normal 

component of centrifugal acceleration effectively reduces g(ϕ) by the quantity ω2  r cos2 ϕ,  

while the tangential component also modifies g(ϕ), tending to increase its magnitude by a 
very small amount (except at the poles), and offsets geff from Earth’s centre by the very 
small amount ω2  r cos ϕ sin ϕ .  
 
Thus, to find the magnitude of the resultant geff we use the Pythagorean expression: 

 

geff   =   { (g(ϕ) - ω2  r cos2 ϕ )2  + (ω2  r cos ϕ sin ϕ)2 }0.5  . . .   equation 3 
 

How significant is the effect of centrifugal force in apparently reducing g(ϕ) and offsetting it 
from Earth’s centre? Let’s perform some calculations and, as an example, take our latitude 
to be 40o north, so that ϕ = 40o. In radians: ϕ = 40 * π / 180 = 0.698 radians. Of course, for 

the equator ϕ = 0o, while for the poles ϕ = 90o.  
 



7 
 

Because of oblateness, Earth’s radius at a latitude of 40o is slightly different from the 
equatorial and polar radii. At latitude 40o Earth’s radius is approximately: 6369.345 km. We 
can calculate this value using the following formula (equation 4):   
 

R(ϕ) = { [ (R1² cos(ϕ))² + (R2² sin(ϕ))² ]  / [ (R1 cos(ϕ))² + (R2 sin(ϕ))² ] } 0.5 

 
. . .where R1 is the accepted radius at the equator (6378.137 km) and R2 is the accepted 
radius at the poles (6356.752 km). For a proof of equation 4 see Planetcalc (2019).   
 
Also, at a latitude of 40o the local circumference of the Earth (measured from the rotation 
axis, rather than from Earth’s centre) is: 
 

2π (Earth’s local radius in the plane of the given latitude)  
= 2π (Earth’s actual radius at the given latitude).cosϕ   

=  2π (6369.345 km).cosϕ  =  30,656.93 km 
 

The speed of rotation of the surface about the axis at latitude 40o is therefore:  
 

30,656.93 km / 24 hours  =  1,277.372 km/hr  or  354.826 m/s. 
 
To calculate the Earth’s radius at a given latitude using the above formula for R(ϕ) I wrote a 
short piece of code in the R language for statistics and graphics (please see Appendix 1). The 
code of Appendix 1 also calculates the local circumference at a given latitude (as before - 
measured from the rotation axis to the chosen point on Earth’s surface in the plane of the 
given latitude) and the speed of the Earth’s surface (due to Earth’s rotation) at the given 
latitude. Of course, the R code of Appendix 1 enables these calculations to be undertaken 
for any latitude.  
 
Effective g (geff) is now the resultant (Pythagorean sum) of actual g(ϕ) minus the normal 
component of centrifugal acceleration (ω2  r cos2 ϕ) radially and including the tangential 
component of the centrifugal acceleration  ω2  r cos ϕ sin ϕ. Our model predicts geff for 
latitude 40o at 9.805 m/s2.  
 
The code of Appendix 2 calculates geff at a given latitude ϕ using equation 3. The code 

predicts g(ϕ = 0) = 9.80 m/s2 for the equator (approximately 0.2 m/s2 higher than the 
observed value) and geff for the equator at 9.764 m/s2.  The code also predicts the polar 

g(ϕ) = 9.864 m/s2 (approximately 0.3 m/s2 higher than the observed value) and geff for the 

poles also at 9.864 m/s2 because the centrifugal force does not diminish g(ϕ) there.  
 
We have seen that Newton's Law is an imperfect approximation for g(ϕ). In fact, the 
increase in g(ϕ) resulting from oblateness is less than that expected from a purely inverse 
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square law, and predicts approximately one third of the observed value for Earth, partly 
because the Earth’s density increases toward the center. Thus, our calculated values for 
local gravitational acceleration g(ϕ) slightly overestimate the observed values.  
 
Part 7: Calculating the Direction of Effective g 
The code of Appendix 3 calculates ϴ, the angle between g(ϕ) which points directly to 
Earth’s centre, and geff at a given latitude. We calculate ϴ from the inverse tan of the 
tangential and normal components of the purely gravitational g(ϕ) and centrifugal 
accelerations, as follows: 
 

ϴ = tan-1{ ω2  r cos ϕ sin ϕ / (g(ϕ) - ω2  r cos2 ϕ) }  . . .   equation 5 
 

The calculated angle between g(ϕ) and geff at latitude 40o is 0.097o. In other words, the 

angle of apparent deflection of the pure gravitational force g(ϕ) is small but measureable. 

As expected, the model predicts for both the equator (ϕ = 0o) and the poles (ϕ = 90o) an 

angle of zero between g(ϕ) and geff . These results agree with the details of Figure 1.  

 

In our model, the angle ϴ reaches its maximum at latitude 45o, where it takes the value 
0.0975o. Thus, the angle between g(ϕ) and geff  is noticeable in the mid-latitudes, but is close 
to zero in the vicinity of both the equator and the poles.  
 
Part 8: Variation of Earth’s Radius, g(ϕ), Effective g and Theta with Latitude   
In this section we consider briefly some simple models of the variation of Earth’s radius and 
g(ϕ) by latitude, radial and geff by latitude and the variation of ϴ by latitude. Figure 4 gives 

the variation of Earth’s radius by latitude ϕ, due simply to oblateness of the Earth. The R 
code to produce this graph is given in Appendix 4. 
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Figure 4: Variation of Earth’s Radius by Latitude ϕ 
 
The code used to calculate the variation of Earth’s radius by latitude ϕ involves the 
Pythagorean expression of equation 3, but evaluated over the range of latitudes from the 
equator to the poles. The model assumes a minimum Earth’s radius of 6356.752 km at the 
poles and a maximum radius of 6378.137 km at the equator. The difference is 21.385 km. 
The graph of Figure 4 models the radius for the northern hemisphere (where ϕ varies from 

0o to 90o ), but the results are identical for the southern hemisphere where ϕ varies from -
90o to 0o.  
 
Figure 5 gives the variation of purely gravitational acceleration g(ϕ) by latitude ϕ, resulting 
from our Newton-based model (equation 1) and neglecting the centrifugal force (i.e. 
variation in acceleration due simply to oblateness of the Earth). The R code to produce this 
graph is given in Appendix 4. 
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Figure 5: Variation of purely gravitational acceleration g(ϕ) by latitude ϕ. 

 
As stated earlier, the true increase in g(ϕ) due to oblateness is approximately 0.1 as large as 
expected from an inverse square law, and is approximately 0.33 of the observed value (Iona, 
1978). Thus our model slightly overestimates g(ϕ). 
 
Figure 6 gives the variation of radial g and geff by latitude ϕ, due both to oblateness and the 

centrifugal force at the Earth’s surface. We define radial g as the sum of g(ϕ) and the radial 
component of the centrifugal acceleration (i.e. neglecting the small tangential component), 
as follows:  
 

radial g  =  g(ϕ) - ω2  r cos2 ϕ   . . .   equation 6 
 

In fact, both quantities (radial g and geff) are almost exactly the same because the tangential 
component of the centrifugal acceleration is so small. The R code producing this graph is 
also given in Appendix 4. 
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Figure 6: Variation of radial g and effective g by Latitude ϕ  

 
The model of Figure 6 is nearly, but not quite, identical to that of Figure 5. Our simple model 
predicts a minimum geff and radial g of 9.764 m/s2 at the equator and a maximum of 9.864 
m/s2 at the poles. Thus, a 70 kg person will appear to weigh 70 kg  X  9.764 m/s2   =   683.48 
kg m/s2  at the equator, but 70 kg  X  9.864 m/s2   =   690.48 kg m/s2  at the poles. The 
difference is 7.0 kg m/s2 (apparently a little heavier at the poles). Thus, in our model, which 
slightly overestimates the effect of oblateness on g(ϕ), the person will appear to weigh 
approximately 1% more at the poles. The true difference is approximately 0.5%  

 
Figure 7 gives the variation of ϴ (the angle between g and geff) by latitude ϕ, due to the 
centrifugal force at the Earth’s surface. The model assumes the expression for ϴ given in 
equation 5.   
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Figure 7: Variation of ϴ by latitude ϕ 

 
The model predicts a minimum ϴ of zero at both the equator and the poles. It also predicts 
a maximum of 0.099o at latitudes 45o in both the northern and southern hemispheres. The R 
code to produce this graph is also given in Appendix 4. 

 
Part 9: Other Complicating Factors 
We observe slightly greater acceleration and therefore greater apparent weight at the 
poles, resulting from both centrifugal forces (which are close to zero at the poles and 
therefore do not diminish the effect of pure gravity there) and the small but measureable 
effect of oblateness (itself a result of the centrifugal effect). Both effects are at their maxima 
close to latitudes 45o (north and south). Finally, terrestrial mountains, sea mounts, cities and 
rock of varying densities all have their own small but measureable effect on geff.   

 
Part 10: Further Reading 
Gravitation is a vibrant research field at the professional level and much interesting material 
is available in relevant geophysical and other journals. However, a considerable volume of 
relevant material is available on the Internet. Simply Google ‘Earth gravity and centrifugal 
force’, or ‘International Gravity Formula’ or use other sensible key words to download 
relevant material. For example, you will find that the International Gravity Formula provides 
a range of formulae for the variation of gravity with latitude. For example, a commonly-used 
variant of the International Gravity Formula is, as follows: 
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g(ϕ)  =  9.780327[ 1 + 0.0053024 sin2ϕ  –  0.0000058 sin2(2ϕ) ] m/s2 
 
. . . where the constant 9.780327 is a fitted model value of g(ϕ = 0) at the equator. 

However, many other formulae are used to compute g(ϕ). Frequently, such models involve 
fitting functions to the observed apparent gravitational acceleration, taking account of both 
oblateness and the centrifugal force at the same time. Such models would be less useful 
than the approach taken in this article, because the separate effects of purely gravitational 
acceleration and centrifugal acceleration can no longer be isolated.  
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Note 
The following appendices present code written in the R language for calculation of Earth’s 
radius, purely gravitational g(ϕ), effective g and ϴ. I am happy to provide the code in a text 
file to anyone who wishes to use it. To obtain the code please e-mail me at: 
sigma@outlook.co.nz 

 
 

APPENDIX 1 
R code for calculation of Earth’s radius at a given latitude, variation in g by 

latitude, local circumference and local speed due to Earth’s rotation 
 

Instructions: Create a folder to store the pdf graphs of Appendix 4 and navigate your R working 
directory to that folder. Copy and paste all of the code below into the R workspace together. 

 
rm(list=ls())  # Clears the R workspace 
 
R1 <- 6378.137  # Established radius in km at the equator 
 
R2 <- 6356.752  # Established radius in km at the poles 
 
phideg <- 40 # I have used 40 degrees here, but enter any value of latitude 
as an angle in degrees, simply by replacing the 40 in this line of code  
 
phirad <- phideg * pi/180 # Automatic conversion from degrees to radians, 
as required by R 
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NUMERATOR <- (R1**2 * cos(phirad))**2 + (R2**2 * sin(phirad))**2   
 
DENOMINATOR <- (R1 * cos(phirad))**2 + (R2 * sin(phirad))**2   
 
RADIUS <- (NUMERATOR / DENOMINATOR)**0.5 
 
RADIUS 
 
LOCALCIRCUMFERENCE = 2 * pi * RADIUS * cos(phirad) # Calculates the 
circumference in km at the given latitude 
 
LOCALCIRCUMFERENCE   
 
LOCALVELOCITY = LOCALCIRCUMFERENCE / 24  # Speed in km per hour 
 
LOCALVELOCITY 
 
LOCALVELOCITYMS = LOCALVELOCITY*1000/3600 # Speed in m per second 
 
LOCALVELOCITYMS 
 

 
 

APPENDIX 2 
R code for calculation of the magnitude of radial g and effective g at a given 

latitude. Also calculates radial and effective weight for a given body mass in kg. 
 

Instructions: Copy and paste all of the code below into the R workspace together. 
 
rm(list=ls()) # Clears R workspace 
 
# RADIUS    <-  6378.137  # Reminder of radius at equator.  
 
# RADIUS    <-  6356.752  # Reminder of radius at poles.  
 
 
W  <-  7.292e-5  # Angular velocity of Earth in radians per second 
 
RADIUS  <-  6369.345  # Radius at 40 latitude. For other latitudes 
calculate the radius using the code of Appendix 1 and replace the radius 
value above  
 
RADIUS  <-  RADIUS * 1000 # Convert radius from km to m.  g is measured in 
m/sec2 so radii must also be in m  
 
phideg <- 40  # Enter any value of latitude as an angle in degrees by 
replacing the 40 in this line of code 
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phirad <- phideg * pi/180 # Automatic conversion to radians, as required in 
R 
 
# Now we calculate g for the given latitude and corresponding Earth radius 
 
M <- 5.972e24  # Mass of Earth 
 
G <- 6.674e-11  # Gravitational constant 
 
g <- G * M / RADIUS **2  # Using Newton's Law as an approximation. In fact, 
the increase in g due to oblateness is not as large as expected from the 
inverse squared law, and is approximately 0.33 of the observed value. The 
observed value is larger because the Earth’s density increases toward the 
center. Thus, our calculated values for local gravitational acceleration  
slightly overestimate the true values. In this simple model g is 
overestimated by approximately 0.3%.  
 
g  # Prints our estimate of local g on the R console 
 
 
GEFFRAD  <-  g  -  W**2 * RADIUS * cos(phirad)**2  # Calculate radial 
component of g – normal component of centrifugal. This is the resultant 
acceleration we use to calculate weight on the solid earth 
 
GEFFTANG <-  W**2 * RADIUS * cos(phirad) * sin(phirad)  # Calculate 
tangential component of centrifugal force. On earth, this component is 
cancelled out by friction but is useful for oceans etc.  
 
GEFF  <- (GEFFRAD**2 + GEFFTANG**2)**0.5  # Calculate vector sum for total 
effective g 
 
GEFFRAD  # Prints the magnitude of radial component of g for the given 
angle on the R console 
 
GEFFTANG  # Prints the magnitude of the tangential component of 
acceleration for the given angle on the R console 
 
GEFF   # Prints the magnitude of effective g for the given latitude on the 
R console 
 
 
# Now we calculate the weight of a body at the chosen latitude 
 
MASS <- 70  # Enter a body mass in kg – here it’s 70 kg but you can enter 
your own value 
 
WEIGHT <- MASS * GEFFRAD  # Calculates radial weight using the radial 
component only. OK for terrestrial measurements because friction cancels 
out the tangential component 
 
WEIGHT  # Prints the weight found from the radial component 
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WEIGHTEFF <- MASS * GEFF  # Calculates ‘weight’ using total effective g (OK 
for ocean water etc) 
 
WEIGHTEFF  # Prints the weight using effective g. Because the tangential 
component is so small, it is essentially the same as that found from the 
radial component only.  
  
 
 

APPENDIX 3 
R code for calculation of ϴ, the angle between g and effective g  

at a given latitude 
 
The angle ϴ between g and effective g is given by the inverse tan of the ratio of the 
tangential and radial components of geff. R uses the atan() function to calculate the 
inverse tan. The angle is usually very small but reaches nearly 0.1o around latitude 45o. 

 
rm(list=ls()) # Clears R workspace 
 
# RADIUS    <-  6378.137  # Reminder of radius at equator.  
 
# RADIUS    <-  6356.752  # Reminder of radius at poles.  
 
 
W  <-  7.292e-5  # Angular velocity of Earth in radians per second 
 
RADIUS  <-  6369.345  # Radius at latitude 40 found using the code of 
Appendix 1 and used in the code of Appendix 2. Again, for any other 
latitude use your calculated value from the code of Appendix 1   
 
RADIUS  <-  RADIUS * 1000 # Converting to m 
 
phideg <- 40  # Enter any value of latitude as an angle in degrees by 
replacing the 40 in this line of code 
 
phirad <- phideg * pi/180  # Automatic conversion to radians, as required 
in R 
 
 
# Now we calculate g for the given latitude and corresponding Earth radius 
 
M <- 5.972e24   # Mass of Earth 
 
G <- 6.674e-11  # Gravitational constant 
 
g <- G * M / RADIUS **2  # Using Newton's Law as an approximation got 
purely gravitational acceleration. In fact, the increase in g due to 
oblateness is not as large as expected from the inverse squared law, and is 
approximately 0.33 of the observed value. The observed value is larger 
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because the Earth’s density increases toward the center. Thus, our 
calculated values for local gravitational acceleration slightly 
overestimate the true values. In this simple model g is overestimated by 
approximately 0.3%.  
 
g  # Prints our estimate of local g on the R console 
 
 
GEFFRAD  <-  g  -  W**2 * RADIUS * cos(phirad)**2  # Calculate radial 
component of g - normal component of centrifugal force. This is the 
resultant acceleration we use to calculate weight on the solid earth 
 
GEFFTANG <-  W**2 * RADIUS * cos(phirad) * sin(phirad)  # Calculate 
tangential component of centrifugal force. On earth, this component is 
cancelled out by friction but is useful for oceans etc.  
 
thetarad <- atan(GEFFTANG / GEFFRAD)  
  
thetarad  # Prints the angle in radians on the R console 
 
theta <- thetarad*180/pi  # Convert from radians back to degrees 
 
theta  # Prints the angle between g and effective g in degrees on the R 
console 
 
 
 
 

APPENDIX 4 
R code for modelling and plotting Earth’s radius, effective g and angle  

theta by latitude 
 

Remember to create a folder to store the pdf graphs of Appendix 4 and navigate your R 
working directory to that folder. Copy and paste all of the code below into the R 

workspace together. 
 
 rm(list=ls()) # Clears the R workspace 
 
 # Set up arrays of key variables for calculations  
 
 phideg    <- array(100) # Latitudes in degrees 
 phirad    <- array(100) # Latitudes in radians 
 NUMERATOR <- array(100) # Used in various calculations 
 DENOMINATOR <- array(100) # Used in various calculations 
 RADIUS    <- array(100)  # Earth radius across latitudes 
 g         <- array(100)  # Gravitational acceleration across latitudes 
 GEFFRAD   <- array(100)  # Radial component of geff  
 GEFFTANG  <- array(100)  # Tangential component of geff   
 GEFF      <- array(100)  # Effective g 
 THETARAD  <- array(100)  # Theta in radians 
 THETA     <- array(100)  # Theta in degrees 
 
W  <-  7.292e-5  # Angular velocity of Earth in radians per second 
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R1 <- 6378.137  # Established radius in km at the equator 
 
R2 <- 6356.752  # Established radius in km at the poles 
 
 
# We use a loop to evaluate Earth’s radius across the range of latitudes 
from one degree to the pole. The equator must be treated separately.  
 
for (k in  1:90) { 
 
phideg[k] <- k 
 
phirad[k] <- phideg[k] * pi/180 # Automatic conversion from degrees to 
radians, as required by R 
 
NUMERATOR[k] <- (R1**2 * cos(phirad[k]))**2 + (R2**2 * sin(phirad[k]))**2   
 
DENOMINATOR[k] <- (R1 * cos(phirad[k]))**2 + (R2 * sin(phirad[k]))**2   
 
RADIUS[k] <- (NUMERATOR[k] / DENOMINATOR[k])**0.5 
 
} 
 
RADIUS # Prints out the radii for 1 DEGREE to 90 DEGREES.  
 
 
# WE NOW CALCULATE THE RADIUS FOR THE EQUATOR (CANNOT BE DONE IN THE ABOVE 
LOOP) 
 
NUMERATOREQUATOR <- (R1**2 * cos(0))**2 + (R2**2 * sin(0))**2     
 
DENOMINATOREQUATOR <- (R1 * cos(0))**2 + (R2 * sin(0))**2   
 
RADIUSEQUATOR <-  (NUMERATOREQUATOR / DENOMINATOREQUATOR)**0.5 
 
RADIUSEQUATOR 
 
RADIUS <- c(RADIUSEQUATOR, RADIUS)  # NOW INCLUDING THE EQUATORIAL VALUE 
 
RADIUS 
 
 
 
# CREATE A PNG GRAPH OF EARTH'S RADIUS WITH LATITUDE 
 
png("RADIUS_lat.png") 
 
plot(1:91, RADIUS, pch=16, xaxt="n", type = "l", lwd=2, col = "red", xlab = 
expression(paste("Latitude (",phi, ")")), ylab = "Earth's Radius (km)", 
main= "Variation of Earth's Radius by Latitude", cex.lab=1.3, xlim= 
c(0,95), ylim=c(6355, 6380)) 
 
axis(1, at=c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90),las=1)  
 
dev.off() 
 
# Now we use a second loop to calculate radial g (GEFFRAD), the tangential 
component of the centrifugal acceleration (GEFFTANG) and effective g 
(GEFF)I use multiple loops for clarity for other users of the code 
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# Now we calculate g and geff across latitudes and corresponding Earth 
radii 
 
M <- 5.972e24   # Mass of Earth 
 
G <- 6.674e-11  # Gravitational constant 
 
 
# WE MUST ELIMINATE THE FIRST ELEMENT FOR THE EQUATOR SO WE CAN USE A LOOP 
FOR 1 DEGREE TO 90 DEGREES 
 
RADIUS <- RADIUS[-c(1)]  # Removes the equatorial radius 
 
 
for (k in  1:90) { 
 
RADIUS[k] <- RADIUS[k]*1000   # Convert km to m  
 
g[k] <- G * M / RADIUS[k]**2  # Purely gravitational acceleration 
 
 
GEFFRAD[k]  <-  g[k]  -  W**2 * RADIUS[k] * cos(phirad[k])**2  # Calculates 
radial component of g – normal component of centrifugal 
 
GEFFTANG[k] <-  W**2 * RADIUS[k] * cos(phirad[k]) * sin(phirad[k])  # 
Calculate tangential component of centrifugal force 
 
GEFF[k]   <- (GEFFRAD[k]**2 + GEFFTANG[k]**2)**0.5  # Calculate vector sum 
for total effective g 
 
} 
 
g  # Prints the magnitude of g on the R console 
 
 
GEFFRAD # Prints the magnitude of the radial component of acceleration on 
the R console 
 
GEFFTANG   # Prints the magnitude of the tangential component of 
acceleration on the R console 
 
GEFF  # Prints the magnitude of effective g on the R console 
 
 
# CALCULATE EFFECTIVE G FOR THE EQUATOR (CANNOT BE DONE WITHIN THE ABOVE 
LOOP WHERE k RUNS FROM 1 TO 90) 
 
 
RADIUSEQUATOR <-  R1*1000 
 
geq <- G * M / (RADIUSEQUATOR)**2  # Estimate of g at the equator 
 
 
GEFFRADEQUATOR <-  geq  -  W**2 * RADIUSEQUATOR * cos( 0 )**2  # Calculates 
radial component of g – normal component of centrifugal (FOR EQUATOR) 
 
GEFFTANGEQUATOR <-  W**2 * RADIUSEQUATOR * cos( 0 ) * sin( 0 )  # Calculate 
tangential component of centrifugal force 
 



20 
 

GEFFEQUATOR   <- (GEFFRADEQUATOR **2 + GEFFTANGEQUATOR **2)**0.5  # 
Calculate vector sum for total effective g (FOR EQUATOR) 
 
 
# NOW INCLUDE THE EQUATORIAL VALUES 
 
g <- c(geq, g) 
 
GEFFRAD <- c(GEFFRADEQUATOR, GEFFRAD)    
 
GEFFTANG <- c(RADIUSEQUATOR, GEFFTANG)    
 
GEFF <- c(GEFFEQUATOR, GEFF)    
 
GEFF 
 
 
# CREATE A PNG GRAPH OF PURELY GRAVITATIONAL ACCELERATION g WITH LATITUDE   
 
png("G_lat.png") 
 
plot(1:91, g, pch=16, xaxt="n", yaxt="n", col = "blue", type = "l", lwd=2, 
xlab = expression(paste("Latitude (",phi, ")")), ylab= "", main= "Variation 
of Purely Gravitational Acceleration g by Latitude") 
 
axis(1, at=c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90),las=1) 
 
axis(2, at=c(9.76, 9.77, 9.78, 9.79, 9.80, 9.81, 9.82, 9.83, 9.84, 9.85, 
9.86, 9.87),las=1) 
 
title(ylab = expression(paste("Purely Gravitational Acceleration g m/", 
s^2,")")), line = 2.8, cex.lab=1.0, cex.axis = 0.8) 
 
dev.off() 
 
 
# CREATE A PNG GRAPH OF RADIAL AND EFFECTIVE g WITH LATITUDE (essentially, 
effective g is the same as the radial component) 
 
png("GEFF_lat.png") 
 
plot(1:91, GEFF, pch=16, xaxt="n", yaxt="n", col = "blue", type = "l", 
lwd=2, xlab = expression(paste("Latitude (",phi, ")")), ylab= "", main= 
"Variation of Radial and Effective g by Latitude") 
 
axis(1, at=c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90),las=1) 
 
axis(2, at=c(9.76, 9.77, 9.78, 9.79, 9.80, 9.81, 9.82, 9.83, 9.84, 9.85, 
9.86, 9.87),las=1) 
 
title(ylab = expression(paste("Radial and Effective g (m/", s^2,")")), 
line= 2.8, cex.lab=1.0, cex.axis = 0.8) 
 
dev.off() 
 
 
 
# CALCULATE THE VARIATION OF THETA WITH LATITUDE USING ANOTHER LOOP FOR 
CLARITY 
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# Remove the equatorial value of GEFF so we can loop from 1 degree to 90 
degrees 
 
GEFF <- GEFF[-c(1)] 
 
 
for (k in  1:90)  { 
 
THETARAD[k] <- atan((W**2 * RADIUS[k]*cos(phirad[k])* sin(phirad[k])) / ( 
GEFF[k]  -  W**2 * RADIUS[k]*cos(phirad[k])))  
  
THETARAD  # Prints the angle in radians on the R console 
 
THETA[k] <- THETARAD[k]*180/pi  # Convert from radians back to degrees 
 
} 
 
THETA  # Prints the magnitudes of theta on the R console 
 
 
 
# CALCULATE THETA FOR THE EQUATOR (CANNOT BE DONE IN THE ABOVE LOOP). 
CALCULATION IN FULL, THOUGH IT MUST BE ZERO BECAUSE OF THE SINE FUNCTION 
TAKING THE VALUE ZERO AT ZERO LATITUDE 
 
 
THETAEQUATOR <- atan((W**2 * RADIUSEQUATOR * cos( 0 )* sin( 0 )) / 
(GEFFEQUATOR  -  W**2 * RADIUSEQUATOR *cos( 0 )))  
  
# THETARAD  # Prints the angle in radians on the R console 
 
THETAEQUATOR <-  THETAEQUATOR *180/pi  # Convert from radians back to 
degrees 
  
THETA <- c(THETAEQUATOR, THETA) 
 
THETA 
 
 
# CREATE A PNG GRAPH OF THETA WITH LATITUDE 
 
png("THETA_lat.png") 
 
plot(1:91, THETA, pch=16, xaxt="n", yaxt="n", col = "darkgreen", type = 
"l", lwd=2,  xlab = expression(paste("Theta (",theta, ")")), 
ylab= "", main= "Variation of Theta for Effective g by Latitude") 
 
axis(1, at=c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90),las=1) 
axis(2, at=c(0.0, 0.02, 0.04, 0.06, 0.08, 0.1),las=1) 
 
title(ylab = expression(paste("Theta for Effective g in degrees")), line = 
2.8, cex.lab=1.0, cex.axis = 0.8) 
 
dev.off() 
 


